
141

Sensing Behavioral Change over Time: Using Within-Person
Variability Features fromMobile Sensing to Predict Personality Traits

WEICHEN WANG, Dartmouth College, USA
GABRIELLA M. HARARI, Stanford University, USA
RUI WANG, Dartmouth College, USA
SANDRINE R. MÜLLER, University of Cambridge, United Kingdom
SHAYAN MIRJAFARI, KIZITO MASABA, and ANDREW T. CAMPBELL, Dartmouth College, USA

Personality traits describe individual differences in patterns of thinking, feeling, and behaving (“between-person” variability).
But individuals also show changes in their own patterns over time (“within-person” variability). Existing approaches to
measuring within-person variability typically rely on self-report methods that do not account for fine-grained behavior
change patterns (e.g., hour-by-hour). In this paper, we use passive sensing data from mobile phones to examine the extent to
which within-person variability in behavioral patterns can predict self-reported personality traits. Data were collected from
646 college students who participated in a self-tracking assignment for 14 days. To measure variability in behavior, we focused
on 5 sensed behaviors (ambient audio amplitude, exposure to human voice, physical activity, phone usage, and location data)
and computed 4 within-person variability features (simple standard deviation, circadian rhythm, regularity index, and flexible
regularity index). We identified a number of significant correlations between the within-person variability features and the
self-reported personality traits. Finally, we designed a model to predict the personality traits from the within-person variability
features. Our results show that we can predict personality traits with good accuracy. The resulting predictions correlate with
self-reported personality traits in the range of r = 0.32,MAE = 0.45 (for Openness in iOS users) to r = 0.69,MAE = 0.55
(for Extraversion in Android users). Our results suggest that within-person variability features from smartphone data has
potential for passive personality assessment.
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1 INTRODUCTION
Personality psychology focuses on examining individual differences in people’s thoughts, feelings, and behaviors.
Compared to the amount of research on people’s thoughts and feelings, considerably less research has examined
how people behave in the context of everyday life (e.g., daily levels of physical activity, sociability, places visited).
Traditionally, research examining individual differences has focused on between-person variability in mean levels
of such behaviors. For example, people who are more extroverted can be characterized by higher mean levels of
talkativeness, compared with people who are less extroverted. However, people also vary in the extent to which
their own behavioral patterns change over time, which is referred to as within-person variability. For example, a
person who is described as being more extroverted, may show great variability (e.g., socializing little during the
week, but a great amount during the weekend) or stability (e.g., socializing a similar amount every day of the
week) in their behavior patterns when considered over time.

Past research has shown within-person variability to be linked to various psychological characteristics, such as
a person’s affective states [35], mental well-being [47] and personality trait ratings [19]. However, past research
often relied on a person’s capacity to accurately recall their daily experiences retrospectively [52, 53], a task
that is challenging and time-consuming. Individuals may also intentionally under-report or over-estimate some
of their behaviors [64]. Fortunately, smartphone sensing methods [39] are set to overcome these barriers by
unobtrusively measuring behavioral patterns continuously over time and thereby allowing us to understand the
fine-grained within-person variability in behavioral patterns.
In this paper, we present a new approach to capture within-person variability in behaviors using mobile

sensing with the goal of assessing and predicting self-reported personality traits. We use the Big Five model [34] ,
which describes 5 major personality trait dimensions: Openness, Conscientiousness, Extraversion, Agreeableness,
and Neuroticism. Openness is a personality trait that describes the extent to which a person is imaginative and
insightful. Conscientousness is a trait that describes the extent to which a person is thoughtful, shows impulse
control, and engages in goal-directed behaviors. Extraversion is a trait that describes the extent to which a person
is excitable, social, talkative, and exhibits emotional expressiveness. Agreeableness is a trait that describes the
extent to which a person is trusting, altruistic, kind, and engages in prosocial behaviors. Neuroticism is a trait
that describes the extent to which a person is moody and emotionally unstable.
To examine how within-person variability in behavioral patterns are related to trait ratings, we consider the

following everyday behaviors inferred using mobile sensing [27]: social interactions (i.e., how much a person
socializes), physical activity and mobility (i.e., how physically active they are, and how many different places they
spend time in), daily activities (i.e., how often they use their phone), and situational information (i.e., noisiness
of their environment). To quantify within-person variability in lifestyle behaviors, we compute the following
within-person variability metrics for each of the four everyday behaviors: standard deviation, circadian rhythm,
regularity index, and flexible regularity index. We examine the connections between within-person variability
metrics and personality traits; specifically, we pose the following broad research question: To what extent do
day-to-day behavioral patterns of stability and change reveal a person’s personality traits? To answer this research
question, we collected self-reported personality trait ratings as our measure of ground truth, along with the
following sensing data as our measures of lifestyle behaviors: ambient audio amplitude levels (which indicates
how quiet or noisy the environment is), exposure to human voice (relating to how social the user is), physical
activity, phone usage and location data from 646 students using their Android and iPhones at the University of
Texas at Austin (UTA) over a course of up to 2 weeks. The contributions of the paper are as follows:

• We demonstrate for the first time how within-person variability patterns collected passively by a compre-
hensive cross-platform (i.e., Android and iOS) mobile sensing app can be used to predict personality traits.
Specifically, we measure and assess everyday behaviors including social interactions, physical movement,
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daily activity and situational information. Furthermore, we propose using the following measures of within-
person variability: standard deviation, circadian rhythm, regularity index, and flexible regularity index.
These measures capture behavioral variability from different perspectives (these measures are explained in
more detail in Section 3).

• We identify a number of important associations between the within-person variability features and self-
reported personality traits. Furthermore, we predict personality traits solely based on within-person
behavior change features. Our results show that our proposed personality prediction model based on within-
person variability features provides good estimation of personality traits, particularly for extraversion and
agreeableness. For example, for Android users the leave-one-out model for predicting the extraversion trait
achieves 0.55 of MAE, which is 0.24 (30%) lower than the average baseline and 0.5 (48%) lower than the
random baseline; for iOS users the leave-one-out model for predicting the extraversion trait achieves 0.61
of MAE, which is 0.11 (15%) lower than the average baseline and 0.39 (39%) lower than the random baseline.

To the best of our knowledge, we are the first to explore how within-person variability patterns can be used to
predict personality traits using features derived from mobile sensing. Our results pave the way for future research
on this psychological topic. The structure of the paper is as follows. First, we present related work on personality
and mobile sensing research in Section 2, followed by a detailed description of the “within-person variability”
measurements in Section 3. We describe the sensing system, study design, and the dataset in Section 4. Following
that, we discuss the correlations between the within-person variability features and personality traits in Section
5.1. In Section 5.2, we present the results of using the within-person variability features to regress on and predict
personality scores. We discuss limitations of our methods in Section 6. Finally, we present concluding remarks
and the implications in Section 7.

2 RELATED WORK
In recent years, mobile sensing has demonstrated its potential as a tool for tracking and modeling human behavior
[28, 29, 51, 62]. Equipped with unobtrusive sensors, smartphones can collect continuous sensing data that reveal
individuals’ behavioral patterns and psychological states over long periods of time. For example, several studies
have used smartphone sensing to continuously assess people’s mental health [5, 39, 58]. The StudentLife study
[68] investigated the relationship between many types of smartphone data (e.g., conversation, sleep, activity,
and co-location) and mental health outcomes (e.g., depression, stress, loneliness, and flourishing) in Dartmouth
students during an academic term. Using the same dataset, Harari et al. [26] analyzed the changes of students’
activity and sociability behaviors over a term via the accelerometer and microphone sensors. Ben-Zeev et al. [6]
used mobile phones to collect passive sensing data from smartphones and find schizophrenia relapse signals in
location, activity, and exposure to conversation prior to patients experiencing relapses. Saeb et al. [62] reported
depressive symptom severity correlates with mobility patterns and phone usage derived from smartphone data.
They replicated their findings using the StudentLife [68] dataset [61]. Canzian and Musolesi [13] proposed a
location routine index computed from smartphone location data, which was predictive depression severity.
Abdullah et al. [1] reported using location features computed from smartphone data, such as distance traveled,
conversation frequency, and non-stationary duration, to infer the social rhythm metric (SRM) [53] score, a widely
used lifestyle regularity metric.

Several other studies have focused on inferring stability or variability in lifestyle behavioral patterns inferred
from smartphone sensing data. For example, Abdullah et al. [2] computed daily rhythms related to sleep to
measure well-being. Saeb et al [62] explored using circadian rhythm inferred from smartphone location data to
assess depressive symptom severity. Ghandeharioun et al. [21] computed a sleep regularity index (SRI) using
accelerometer data and show that SRI differs significantly between days with good and poor mental health.
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Mehtrotra and Musolesi [51] proposed a movement digital biomarker for monitoring emotional state , which
measures the similarity between the sequences of visited places in a day.
There has also been an increasing amount of research focused on predicting personality traits from digital

media data. Researchers have sought to predict personality using social network structures and interactions
, showing that the behavioral data collected from social media platforms such as Facebook [44, 54, 66, 72] or
Twitter [22, 23, 57] can be informative in the prediction of people’s personalities. Youyou et al. [72] showed that
using Facebook Likes, a computer can predict participants’ personality more accurately than their Facebook
friends. Moreover, the computer-made personality judgments had higher external validity when predicting life
outcomes ( e.g., substance use, political attitudes, and physical health). Park et al. [54] built a predictive model of
personality based on 66,732 Facebook users’ written language. The predicted personality scores correlate with
the ground truth. Golbeck et al. [22] shows that Twitter users’ language use, sentiment, and Twitter use can be
used to predict personality traits. However, these methods usually require access to extensive information about
people’s online social networks.
Researchers have also utilized the information from mobile phones in personality assessment studies. Early

studies tried to find relationships between personality traits and phone communications (i.e., phone calls and text
messages) [11, 14, 16]. For instance, Montjoye et al. [15] used standard mobile phone logs (i.e., calls and texts) to
predict users’ personality. Staiano et al. [63] collected call logs and Bluetooth proximity data from 53 subjects
over 8 weeks to build a call network and a Bluetooth proximity network and used network characteristics to
predict users’ personality traits. A recent study [67] explored using the StudentLife dataset, which comprises
Wi-Fi, GPS, Bluetooth, accelerometer, and Piazza usage data to assess personality, finding significant correlations
between behavior features Wi-Fi location based behavior features and personality traits. However, much of the
aforementioned work used behavioral features focused on capturing ‘between-person’ variability in behavioral
patterns. In this paper, we focus on capturing and assessing within-person variability features from objective
sensing behaviors, and show how these features can predict personality traits of smartphone users.

3 WITHIN-PERSON VARIABILITY MEASUREMENTS
In what follows, we describe the passive smartphone sensing measures of behavior that we used to quantify
behavioral variability. We first describe the behavioral data collected (social interactions, movement and mobility,
daily activity, and situational information), then we introduce the metrics that we used to quantify within-person
variability (Standard Deviation, Circadian Rhythm, Regularity Index, Flexible Regularity Index).

3.1 Behaviors Inferred from Passive Smartphone Sensing
In what follows, we present the four aspects of daily behaviors that are captured through passive sensing
using smartphones. We extend the StudentLife Android app [1, 40, 68, 70], which was originally used to capture
students’ behaviors during a term and port it to the Apple iOS platform. The app measures daily social interactions,
movement and mobility, daily activities and situational information by continuously collecting audio amplitude,
ambient voice, participants’ physical activities, lock/unlock events and location coordinates.
Social interaction.We consider inferred ambient voice labels as a proxy for social interactions (i.e., being around
conversation). We implement a conversation classifier on the phone to infer whether or not a 32ms audio frame
is human voice. The voice classifier is implemented using a duty-cycled audio sensor that continuously runs on
the smartphone. The voice classifier is the most energy consuming module in the app. To save energy, we set the
duty cycle to be 1 minute on and 3 minutes off. It has been show in [68] that using this duty cycle we can achieve
a balance between accuracy and resource usage. Further more, to preserve participant privacy, only the labels
from the classifier are kept in the dataset and no raw human voices or speech content is recorded. Our classifier
uses privacy preserving features [58, 68] and first determines if the frame contains speech and if so a higher level
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conversation classifier determines if there are sufficient speech frames to indicate the start and later the end of a
conversation. The frequency and duration of conversations are stored on the phone and uploaded for analysis.
Note that the conversation classifier does not use speaker identification for privacy reasons and therefore only
indicates if the user is in the presence of conversation rather than being an active speaker. Therefore, we consider
our conversation inferences a proxy for social engagement. The speech/conversation classifier has been validated
in several previous studies [6, 58, 68, 70].
Movement and mobility. The phone provides location data that allows us to understand users’ movement and
mobility patterns. We find a user’s significant places (i.e., those places where users spent significant time) during
the day and their associated dwell times (when the user arrives and leaves a location) by clustering the sampled
coordinates during a day using density-based spatial clustering of applications with noise (DBSCAN) [18]. The
DBSCAN algorithm groups the points that are close to each other and computes the center of the cluster. The
center of the cluster is considered a significant location.
Daily activity.We consider two kinds of daily activity: physical activity and phone activity (i.e., phone usage).
Personality traits are hypothesized to exert influence on physical activity through a health-behavior model
[48, 60, 71]. Our app obtains activity inferences (i.e., stationary, walking, running, cycling, in vehicle) from the
Android activity recognition API [24] and iOS Core Motion [32]. We compute the sedentary duration within
every hour of the day using the phone’s physical activity inferences. Another aspect of daily activity we consider
as providing signal is phone usage. An increasing number of researchers have shown that smartphone usage
reflects psychological well-being [10, 11, 36, 41, 45]. We compute the number of phone lock/unlock events and
phone unlock duration to estimate the phone usage.
Situational information.We use ambient sound from the phone as a proxy for contextual information about the
environment of users. Previous work [50] shows that participants’ personality traits are related to the quotidian
manifestations derived from the sampled snippets of ambient sounds of users immediate environment. We
periodically collect sound levels to measure the ambient sound environment. For privacy reasons we do not store
any raw audio data. Rather, we compute the average sound amplitude over a period of one second so that the
audio can not be reconstructed.

3.2 Within-Person Variability Metrics
Standard deviation is one of the simplest and most common approaches to measuring within-person variability.
However, there may be other behavioural change metrics that better capture the patterns of change and stability
in peoples’ everyday lives. These approaches could be more meaningful in better understanding within-person
variability and its relationship to personality. To study this, we compute a number of variability measures
including: the simple standard deviation, the circadian rhythm [2, 13, 61, 62], the regularity index and the flexible
regularity index. We use these measures to assess the within-person variability of each behavior inferred using
passive sensing. We first partition a day’s data into 24 one-hour periods and process the sensor data in an hourly
fashion. For example, consider ambient audio amplitude, we compute the mean audio amplitude for each one-hour
period; for voice, we compute the amount of conversation duration measured in one-hour periods; for physical
activity, we compute the sedentary duration across each hour period; for the phone usage, we compute the
number of phone unlock events registered during each hour period. We do not preprocess location data. Next,
we compute the four within-person variability metrics discussed above. Table 1 summarizes the within-person
variability features used in this study. In what follows, we describe each metric in detail.
Standard deviations [STD] measure the variance in daily behaviors. We compute the STD over three epochs
during a 24-hour period: day time (9am–6pm), evening (6pm-12am), and night (12am-9am) across all days of
the week. Because people are likely to have different behavioral patterns during weekdays in comparison to
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weekends, we compute the STD for the three epochs (i.e. day, evening, night) for weekdays data only. We do not,
however, compute the STD for weekends because of limited amounts of weekend data.
Circadian rhythm [CR][2, 13, 61, 62] measures the strength with which a user follows a 24-hour rhythm
in behaviors [61]. Humans have a biological clock that optimizes the physiology and behavior of organisms,
hormonal secretion and mood [37]. However, people differ in their circadian rhythms. For example, previous
studies have shown individual differences in the morning and evening related to personality [3, 59]. We compute
the CR across the study period for hourly behavioral data using spectrum analysis. Specifically, we first use the
least-squares spectral analysis [56] to transform the behavioral sensing data (i.e., physical activity, phone activity
ambient sound, ambient voice) from the time domain to the frequency domain. We then compute the ratio of
energy that fall into the 24 ± 0.5 h period (which corresponds to 2π/(24 ± 0.5) = (0.2565, 0.2674)) over the total
spectrum energy in the 24 ± 12 h period (which corresponds to 2π/(24 ± 12) = (0.1745, 0.5236)) as the CR:

CR =

∫ 2π /(23.5)
2π /(24.5) psd(x)dx∫ 2π /(12)
2π /(36) psd(x)dx

(1)

where psd(x) denotes the power spectral density at frequency bin x. The raw hourly signal is first aligned
to zero mean before performing spectral analysis. Fig. 1 shows an example of the computed CR for ambient
sound. The plots show the raw hourly ambient sound amplitude and the corresponding power spectrum for two
participants selected from the study. The raw data show that participant (a) has a more pronounced 24-hour cycle
for ambient sound than (b). As such, the CR value for participant (a) is 0.093 whereas the CR value for participant
(b) is 0.040. For the mobility data, we use the steps described in [61] to compute the CR of mobility: we first
generate the CR for the latitude and longitude values then combine them through CR = log(CRlat +CRlonд).

(a) Participant with high circadian rhythm value (b) Participant with low circadian rhythm value

Fig. 1. Circadian Rhythm analysis using audio amplitude sensing data from two participants.

Regularity index [RI] assesses the difference between the same hours across two different days. We first rescale
the behavioral data for each participant to [−0.5, 0.5], where -0.5 corresponds to the minimum value in the origin
data and 0.5 corresponds to the maximum value. The product of two rescaled values is positive if the original
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values are close and negative if they are not similar. Subsequently, we define the regularity between day a and b
as:

∀(a,b) ∈ S, RIa,b =
T∑
t−1

f (xat )f (x
b
t )/T (2)

where S is the set of two-day pairs, a,b are the two days in a two-day pair, T = 24hours, and xat is the rescaled
value in hour t of day a.

We compute the mobility RI differently because unlike other behavioral data mobility data is nominal (i.e., a
mobility data point represent a location). We therefore compare whether or not a user is at the same place in two
days. The mobility RI is formally defined as:

RI_loca,b = −

Tloc∑
t=1

д(cat , c
b
t )/Tloc (3)

where a,b represent two different days, t represent the time window in a day (a window lasts 10 minutes),Tloc
is the available number of overlapped time windows in both days, cat is the significant location id time t in the
day a, and д(m,n) indicate whether or notm = n. A higher RI score indicates that the user visited similar places
around a similar time of day in two given days.
We compute the average and range of the RI values from every possible pair within the following sets: (1)

weekdays vs weekends, (2) within weekdays, (3) within all days.
Flexible regularity index [FRI] is an edit distance based (or Levenshtein distance [42]) measure to assess the
difference between two days differently. An edit distance quantifies how dissimilar two strings are to one another
by counting the minimum number of operations needed to transform one string to the other. Such operations
include removing, inserting, or substituting one character in the string. Different operations may have different
weights. The edit distance of the behavioral data in two days reveals how similar the behaviors in two days are.
A lower edit distance (i.e., lower FRI) between different two days indicates more similar behaviors.

We compute the FRI as follows. First, we transform the behavioral sensing data into strings. Specifically, for
behavioral data other than mobility, we label a one-hour chuck as ‘a’ if the mean sensor reading in this hour is
within the bottom 25 percentile of all data from this user; ‘c’ if the mean is within the top 25 percentile; and ‘b’ if
the mean is between the bottom 25 percentile and top 25 percentile. For mobility, we use the significant location
id to generate the mobility string in day. We define the weights for each operation as shown in Table 2.

4 DATA COLLECTION AND PROCESSING
We collected a dataset from 646 students at the University of Texas at Austin (UTA). The participants were enrolled
in an online introductory psychology class across two semesters. As part of a course assignment, participants
could self-track their lifestyle behaviors in exchange for personalized feedback using a tracking method of their
choice: a mobile sensing app, email-based surveys, or a handwritten journal. Here we focus on the data collected
from students who elected to use the mobile sensing app. Participants installed the data collection app on their
phones and were asked to participate for at least seven days. Participants were able to participate for up to
fourteen days. Among the 646 participants, 117 used Android phones and 529 used iPhones. All participants
complete the Big Five personality trait questionnaire [34] at the start of the study period, which serves as the
ground truth for personality traits in this study.
Fig. 2 shows the overall system and study design. The complete system included the sensing app and cloud

and was based on an earlier version of the StudentLife system [68]. We continuously collected behavioral passive
sensing data from participants’ Android phones and iPhones. The data was then automatically uploaded to our
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Table 1. Description of the features computed

Feature
category

Features computed Description of feature Sensing data

Standard
Deviation
(STD)

std_night_all STD on the data at night across all days
Ambient sound
Ambient voice
Physical activity
Phone activity

std_day_all STD on the data during day time across all
days

std_evening_all STD on the data in the evening across all
days

std_night_weekday STD on the data at night across weekdays
std_day_weekday STD on the data during day time across week-

days
std_evening_weekday STD on the data at night across weekdays

Circadian
Rhythm
(CR)

circadian_all Circadian rhythm from data across all days Ambient sound
Voice labels
Physical activity
Phone activity
Location

circadian_weekday Circadian rhythm from data across week-
ends

Regularity
Index
(RI)

ri_weekday_vs_weekend_avg Measures the average hour-by-hour similar-
ity between weekdays and weekends Ambient sound

Ambient voice
Physical activity
Phone activity
Location

ri_weekday_avg Measures the average hour-by-hour similar-
ity across weekdays

ri_all_avg Measures the average hour-by-hour similar-
ity across all days

ri_weekday_vs_weekend_range Measures the range (i.e., the difference of
the most similar pair and the most distin-
guished pair) of hour-by-hour similarity be-
tween weekdays and weekends

ri_weekday_range Measures the range of hour-by-hour similar-
ity between weekdays

ri_all_range Measures the range of hour-by-hour similar-
ity across all days

Flexible
Regularity
Index
(FRI)

fri_weekday_vs_weekend_avg All the definitions are parallel to the RI. The
FRI measures the “edit distance” between
two days, which allows the hours to be
slightly shifted when doing the
hour-by-hour comparison with reasonable
penalty.

Ambient sound
Ambient voice
Physical activity
Phone activity
Location

fri_weekday_avg
fri_all_avg
fri_weekday_vs_weekend_range
fri_weekday_range
fri_all_range

secure server. The server processed the data, and generated personalized web-pages of feedback reports, which
were sent to students via email during the study. Those reports included personalized visualizations of the tracked
behaviors as well as class average charts for comparison.
In what follows, we discuss how we processed the data in detail.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 3, Article 141. Publication date: September 2018.



Sensing Behavioral Change over Time: Using Within-Person Variability Features from Mobile... • 141:9

Table 2. Cost definition in FRI calculation

Operation Cost
sensing data other than location location sequence

insertion 1 1
removal 1 1

substitution if letters are adjacent (e.g., ‘a’ and ‘b’) 0.5 1others 1.5

physical activity
ambient sound
ambient voice
phone usage
location

Sensing

1

2
Upload when phone is being 

powered and connected 
to Internet

3 Personalized feedback Webpage generated automatically 
based on the data of the previous day

5

4 Generate  regularity features

 standard deviation 
 circadian rhythm 

Big Five traits

openness
conscientiousness
extraversion
agreeableness 
neuroticism

 regularity index 
 flexible regularity index

Analysis

 weekdays
 all days

weekdays vs weekends

Can we predict personality 
purely from within-person 
variability? 

Is personality associated 
with within-person 
variability?

Fig. 2. System and study design.

4.1 Data Inclusion Criteria
Data quality is crucial for analysis. Missing data across a day will adversely affect the accuracy of the within-
person variability features. Therefore, we exclude days with less than 19 hours of sensing data. The 19-hour
threshold is based on previous studies [68, 70], which balances the need for data quality and quantity. We also
exclude participants who have less than 7 days of usable data (more than 19 hours of sensing data). 159 out of the
646 participants satisfy our data inclusion criteria and included in our analysis. Among them, 70 are Android
users and 89 are iPhone users. The high data exclusion rate is mainly due to participants running the app for less
than 14 days. Other factors include the phone being powered down, turning location off, and stopping the app.
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4.2 Big Five Personality Ground truth
We use the self-reported Big Five Inventory (BFI) [34] scores as our personality ground truth. The BFI measures
the personality traits: openness, conscientiousness, extraversion, agreeableness and neuroticism. Fig. 3 shows the
distributions of the Big Five scores of the included 159 participants. The distributions show that the values for all
five traits approximate a normal distribution in this sample. Table 3 shows the mean and standard deviation of
the five personality trait scores.

Fig. 3. Histograms of the Big Five scores. The X axis displays the value of the score, which ranges from 1 (lowest) to 5 (highest).
The Y axis shows the number of individuals that fall into the specific score bins. The three rows show the distribution of the
scores for all participants (first row), the Android (second row) and the iOS (third row) users.

Table 3. Distributions of the personality ground truth

Big Five trait Mean (std) Android mean (std) iOS mean (std) t-test p value
Openness 3.54 (0.62) 3.61 (0.61) 3.48 (0.62) 0.21
Conscientiousness 3.45 (0.65) 3.31 (0.63) 3.57 (0.65) 0.01
Extraversion 2.99 (0.90) 2.97 (0.92) 3.00 (0.88) 0.83
Agreeableness 3.74 (0.63) 3.70 (0.63) 3.76 (0.63) 0.63
Neuroticism 3.03 (0.79) 3.08 (0.79) 3.00 (0.80) 0.50

The mean of the trait scores are close to a score of 3 (the middle of the 1-5 range). The agreeableness score is
close to 4, which is the highest mean of the trait scores, followed by openness, conscientiousness, neuroticism
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and extraversion. For most of the personality traits, minor differences are of small to negligible effect size. This is
inline with a recent study [25] among a large multi-national (N = 1081) and a German-speaking sample (N =
2438). However, in our data Android users seem to be less conscientious than iOS users (t-test p = 0.01), which is
in contrast to the findings in [25]. The reason could be the population and age: unlike a large multi-national user
group with various occupations, our study participants are college students from one university. In addition, our
population of users is smaller.

5 ASSESSING PERSONALITY USING WITHIN-PERSON VARIABILITY MEASURES
In what follows, we present the results from association analysis and prediction of personality traits using
passive sensing data from smartphones. We first extract all the within-person variability features and report
linear correlations between the features and the self-reported personality scores. Then, we create a personality
prediction model and analyze its prediction performance using only within-person variability features.

5.1 Association Analysis
We use the bivariate linear mixed model [49] to assess the relationship between the within-person variability
features and Big Five personality traits. In our study, the sensing data come from two clusters: Android and iOS.
There exist potential differences between two systems (e.g., both Google and Apple have their own physical
activity classifiers and audio software development kits). Therefore, the sensed behavioral patterns are not
independent. Linear mixed models are an extension of simple linear models to allow both fixed and random
effects, and are particularly useful when there is non-independence in the data. Our association results are
presented in Table 4. In order to address the multiple comparisons problem, we apply the Benjamini-Hochberg
procedure (BH) [8, 9] to control the false discovery rate (FDR) in our exploratory regression analysis. The multiple
comparisons problem arise when multiple simultaneous statistical tests are involved in the analysis, which may
lead to erroneous discoveries. We present associations with p < 0.05 and mark associations that have FDR < 0.1
and FDR < 0.05.

In what follows, we discuss our results as they relate to the personality traits.
Openness. We find that four within-person variability features are positively associated with the openness trait.
They are as follows: (1) the deviation in ambient sound on weekday (i.e. Monday-Friday) evenings (6pm-12am);
(2) the deviation in physical activity in the evening across all days (i.e. Monday-Sunday); (3) the deviation in
physical activity in the evening of weekdays; and finally (4) the range of the regularity index in ambient sound
during weekdays. Our results indicate that participants who have various activities during the weekday evenings
are more likely to be more open to new experiences. On several weekdays they stay in similar environments at
the same hour of each day. However, on some other weekdays they spend time in very different environments
(as captured by ambient sound).

We find that two within-person variability features are negatively associated with the openness trait. They
are (1) the deviation in ambient voice between 9am - 6pm across all days; and (2) the deviation in ambient voice
between 9am - 6pm on weekdays. Assuming ambient voice is a proxy for social interaction, our results indicate
that people who have changing patterns in interaction with others during the daytime are likely to be less open
to new experiences.
Conscientiousness. We find that four within-person variability features are positively associated with the
conscientiousness trait. These are (1) the average of the flexible regularity index in ambient voice on weekdays; (2)
the circadian rhythm in phone usage across all days; (3) the circadian rhythm in phone usage on weekdays; and
(4) the flexible regularity index in physical activity. Our results indicate that participants who spend weekdays
engaged in more regular social interactions (with hours slightly shifted), and who show more regular phone
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usage during the day, and have regular patterns of physical activity during weekdays are more likely to have
good impulse control and goal-directed behaviors.

We find that five within-person variability features are negatively associated with the conscientiousness trait.
These are (1) the deviation of exposure to ambient voice on weekday evenings; (2) the regularity index in locations
between weekdays and weekends; (3) the regularity index in locations across all days; (4) the flexible regularity
index in locations between weekdays and weekends; and finally (5) the flexible regularity index in locations
across all days. This leads us to believe that individuals who have unstable social interactions during weekday
evenings, and more overlap between weekdays and weekends in terms of their location routines are likely to be
less conscientious.
Extraversion.We find that five within-person variability features are positively associated with the conscien-
tiousness trait. These are (1) the circadian rhythm in ambient sound across all days; (2) the circadian rhythm in
phone usage across all days; (3) the circadian rhythm in phone usage on weekdays; (4) the deviation in physical
activity in the evening across all days; and finally (5) the deviation in physical activity in the evening on weekdays.
This suggests that people who are more extraverted are, interestingly, more likely to follow a 24-hour rhythm
with regards to the environments they spend time in (as captured by ambient sound) as well as their smartphone
usage. These participants also tend to have various activities during the evening – similar to the patterns observed
for openness.
In addition, we find that five within-person variability features are negatively associated with the conscien-

tiousness trait. These are (1) the deviation in exposure to ambient voice during the daytime (9am-6pm) across
all days; (2) the deviation in exposure to human voices during the evening (6pm-12am) across all days; (3) the
deviation in exposure to human voices during the daytime (9am-6pm) on weekdays; (4) the deviation in exposure
to human voices during the evening (6pm-12am) on weekdays; and finally (5) the deviation of phone usage in the
evening periods across all days. These results tell us that more extroverted individuals are less likely to socialize
in a changing pattern. Rather, they are more likely to maintain a stable pattern of interpersonal communication
over the week, particularly in the evenings. Similarly, this also applies to their phone usage during evening
periods.
Agreeableness. We find a large number of within-person variability features are positively associated with the
agreeableness trait. These are (1) the range of the flexible regularity index in ambient sound; (2) the range of
the flexible regularity index in phone usage on weekdays; (3) the circadian rhythm in physical activity; (4) the
flexible regular index in physical activity on weekdays; (5) the flexible regularity index in physical activity across
all days; (6) the regularity index in physical activity on weekdays; (7) the range of regularity index; and finally
(8) the flexible regularity index in locations on weekdays. These results indicate more agreeable participants
are more likely to have to follow a 24-hour rhythm in physical activity. They also tend to have more regular
physical activity patterns – based on hour-by-hour comparisons between days. They are more likely to change
their ambient sound environment and location routines for some weekdays, while they keep them unchanged on
other days.
In addition, we find a number of within-person variability features that are negatively associated with the

agreeableness trait. These are (1) the deviation in phone usage during the night (12am-9am) on weekdays; (2) the
deviation in physical activity during the night across all days; (3) the deviation in physical activity during the
night period on weekdays; (4) the range of the flexible regularity index in physical activity on weekdays; and
finally (5) the range of the regularity index in physical activity on weekdays within weekdays, between weekdays
and weekends, and across all days. This seems to tell us that people who are agreeable show less deviation in the
time they use their phone during the night. They maintain high regularity in physical activity during the study,
as indicated by the smaller range and higher average of their measured regular index.
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Neuroticism. Neuroticism indicates moodiness and emotional instability. In our study, we do not see any within
person variability features significantly associated with the neuroticism trait.

To sum up, the association analysis supports our hypothesis that within-person behavior change patterns
derived directly from smartphone sensing data are related to self-reported personality traits. Four of the five
personality traits were associated with different types of within-person variability features. However, some
features associated with multiple personality traits. For example, the higher deviation in physical activity during
the evening period was associated with being more open to new experiences and being more extroverted; the
higher regularity in physical activity on weekdays was associated with being more conscientious and more
agreeable.

Table 4. Big Five traits in related to regularity using mixed-effect model.

Big Five trait Association Related within-person regularity features (N=159)

openness (+) sound_std_evening_weekday, stationary_std_evening_all,
stationary_std_evening_weekday, sound_ri_weekday_range

(-) voice_std_day_all, voice_std_day_weekday

conscientiousness (+) voice_fri_weekday_avg, lock_circadian_all, lock_circadian_weekday,
stationary_fri_weekday_avg

(-) voice_std_evening_weekday, location_ri_weekday_vs_weekend_avg,
location_ri_all_avg, location_fri_weekday_vs_weekend_avg, location_fri_all_avg

extraversion (+) sound_circadian_all, lock_circadian_all*, lock_circadian_weekday,
stationary_std_evening_all, stationary_std_evening_weekday

(-) voice_std_day_all, voice_std_evening_all**, voice_std_day_weekday,
voice_std_evening_weekday**, lock_std_evening_all

agreeableness (+) sound_fri_all_range, lock_fri_weekday_range, stationary_circadian_all,
stationary_fri_weekday_avg, stationary_fri_all_avg, stationary_ri_weekday_avg,
location_ri_weekday_range, location_fri_weekday_range

(-) lock_std_night_weekday, stationary_std_night_all,
stationary_std_night_weekday, stationary_fri_weekday_range,
stationary_ri_weekday_vs_weekend_range, stationary_ri_weekday_range,
stationary_ri_all_range

neuroticism (+)
(-)

p < 0.05; bold p < 0.01, *FDR < 0.1, **FDR < 0.05

5.2 Prediction Analysis
We use Gradient Boosted Regression Trees (GBRT) [20, 55] to predict the self-reported Big Five personality scores.
GBRT is an ensemble method that trains and combines several weak regression trees to make more accurate and
robust predictions. It builds base estimators (i.e., regression trees) sequentially. Each estimator tries to reduce the
bias of the previously combined estimators. By doing so, in each stage a new regression tree is trained on the
negative gradient of the loss function. GBRT is less sensitive to outliers and robust to overfitting [17]. Another
advantage inherited from the tree based model is that it computes feature importance measures, which can be
used for feature selection.

We have a total of 96 features (see Table 1) and a relatively small number of training examples (70 Android and
89 iOS). We reduce the feature space dimensionality using the importance vector generated from GBRT. GBRT
computes feature importance by averaging the number of times a particular feature is used for splitting a branch
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across the ensemble trees. Higher values correspond to higher importance. We select features with a feature
importance value higher than the mean importance iteratively. We repeat this process until we get no more than
9 features. Our heuristic of selecting 9 features is based on experiments in which we find we get higher training
errors with a lower or higher threshold.
We train and test models separately among the Android and iOS users. We take this strategy on the basis of

our observation that a model trained from the mixed dataset gives poorer predictions, even if we normalize the
features separately among Android and iOS users. We believe this is due to the differences (i.e., heterogeneities)
between Android and iOS devices, i.e. the accuracy of sensed behaviors may be influenced by the sensors and
algorithms on different platforms. For example, activities are derived from the Google Activity Recognition API
[24] on Android phones and from the iOS Core motion API [32] on iPhones; the values of sound amplitude in the
same environment may be distinct between the two platforms; the conversation classifier may have potentially
small differences because of the different platforms (e.g., different microphones and audio APIs). While we have
designed and implemented our sensing algorithms on both platforms to take known differences between the iOS
and Android platforms into account there are still no widely accepted techniques for equalizing sensing data
from these different platforms. Scaling the values to standard normal distributions separately on both platforms
does not result in an ideal solution - it violates the observation that Android and iOS users may have different
behaviors and phone usage patterns [7, 31, 43, 46, 65]. Adding a binary feature DeviceType to control for the
platform of the device, does not result in better performance when there are no significant differences for most of
the personality traits (Table 3). Specifically, in GBRT the tree grows greedily in a top-down fashion using binary
splits. For each tree node, the split minimizing the objective is chosen. The DeviceType may not be selected at
the root of regression trees due to the similar means of ground truth; i.e., the personality trait scores in the two
groups. Taking these challenges into account we opted to divide the data into Android and iOS users. We train
different models on these two groups.
Usually, with a small sample set leave-one-out cross validation [30] would be the best option to show the

performance of the personality trait prediction model. This technique is widely used in estimating the performance
of the model from a small human-centered dataset in existing studies [4, 33, 69, 73]. Leave-one-out has low bias,
because each fold uses almost the entire dataset as a training set [38]. However, as a result, the estimation is
also very specific for this particular dataset. This could results in high variance compared to the same model’s
performance on new datasets. Therefore, we also use five-fold cross validation. For each personality trait, we use
ten times five-fold cross validation and report the average.
We compare our predictive models with two baseline models. The baseline 1 model takes the average of the

scores as the predicted value. This is the most basic regression with only an intercept. The baseline 2 model
randomly generates a sample from the already known distribution (i.e., the distribution of the personality trait
scores) and uses it as the predicted value. We validate our prediction model using the Mean Absolute Error (MAE),
the root mean squared error (RMSE), the Pearson correlation and the R-squared value. MAE and RMSE describe
the bias of the predictions; the Pearson’s r describes how well the predictions are associated with the ground
truth; and the R-squared value measures the goodness of fit by indicating how much of the variance our model
explains [12].

Table 5 shows the performance of the prediction model purely based on within-person variability features. The
models perform better than the two baselines, and capture considerable variance of the original distribution. The
predicted personality score is highly correlated with the ground truth. Our model works better in predicting the
extraversion and agreeableness traits. For example, for Android users the leave-one-out model for predicting the
extraversion trait achieves 0.55 of MAE, which is 0.24 (30%) lower than the average baseline model and 0.5 (48%)
lower than the random baseline model. For iOS users the leave-one-out model for predicting the extraversion
trait achieves 0.61 of MAE, which is 0.11 (15%) lower than the average baseline model and 0.39 (39%) lower than

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 3, Article 141. Publication date: September 2018.



Sensing Behavioral Change over Time: Using Within-Person Variability Features from Mobile... • 141:15

the random baseline model. Our predictive model is less effective at predicting neuroticism, which is in line with
the fact that we did not find features associated with neuroticism, as discussed in Section 5.1.

Table 5. Prediction performance

System Big Five trait Baseline 1 Baseline 2 Leave one out 5-fold cross validation
MAE/RMSE MAE/RMSE MAE/RMSE corr r2 MAE/RMSE corr r2

Android

Openness 0.47/0.60 0.68/0.85 0.40/0.51 0.54 0.287 0.41/0.53 0.49 0.235
Conscientiousness 0.48/0.62 0.69/0.88 0.41/0.54 0.53 0.252 0.45/0.57 0.41 0.141
Extraversion 0.79/0.92 1.05/1.29 0.55/0.67 0.69 0.465 0.65/0.78 0.53 0.268
Agreeableness 0.49/0.62 0.70/0.88 0.40/0.49 0.61 0.366 0.40/0.51 0.57 0.223
Neuroticism 0.66/0.79 0.90/1.11 0.56/0.70 0.46 0.203 0.60/0.73 0.38 0.117

iOS

Openness 0.50/0.62 0.69/0.87 0.45/0.59 0.32 0.072 0.49/0.62 0.20 0.021
Conscientiousness 0.50/0.65 0.72/0.91 0.46/0.59 0.42 0.168 0.46/0.59 0.40 0.143
Extraversion 0.72/0.88 1.00/1.24 0.61/0.76 0.51 0.254 0.65/0.80 0.42 0.161
Agreeableness 0.48/0.63 0.69/0.88 0.39/0.50 0.60 0.358 0.40/0.51 0.56 0.311
Neuroticism 0.64/0.79 0.90/1.12 0.59/0.73 0.40 0.158 0.60/0.77 0.33 0.100

Fig. 4 illustrates the predicted personality trait score (y-axis) and the self-reported ground truth (x-axis) for
each participant using the leave-one-out method. The blue line indicates the ideal model where the predicted
value is equal to the ground truth. The red points above the blue line are overestimated and the points below it
are underestimated. Since our training set is normally distributed, the model gets reinforced in the center area
and has bigger absolute errors on the two sides. Even though, we see that the model can still capture the trend
and variance of the ground truth distribution. Because traits measured using the Big Five Inventory are designed
to be treated as continuous variables, we do not conduct binary classifications. However, the plot indicates that if
we did perform a binary classification to distinguish people with higher or lower scores on some traits, we would
also achieve good performance results, particularly when predicting the extraversion and agreeableness traits.

6 LIMITATIONS
The current study has a number of limitations that need to be addressed in future research. First, further research
is needed to show the data collected from Android and iOS devices can be correctly merged. In our prediction
model we take a conservative approach and separate out the Android and iOS groups. We find a model trained
from the mixed dataset gives worse prediction, even if we normalize the features separately among Android and
iOS users. This could be because of the accuracy of sensed behaviors are influenced by the sensors and algorithms
on different platforms, as discussed earlier in the paper. If so, work is needed to mitigate the impairments caused
by features collected on different platforms. This is an interesting and important area of research in passive
sensing on different devices and bench marking norms between devices. Another possible explanation is that
there are real differences between users who select different platforms; that is, there could exist different baseline
personality trait expressions across the different user groups - which might in turn be explained by advertising
strategies, pricing and the brand personalities of the companies behind the respective operating systems and major
phone manufacturers using them. However, further work is needed to explore to what extent more fundamental
differences in the operating systems, and how they get used by and interact with the phone users influence
these differences, as well as whether the same disparities are observed across samples in other, non-student
populations.

Second, further work is needed to explorewhich sensor-based features are the strongest predictors of personality
traits. There might be some other powerful features which can better represent the changes in lifestyle that
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Fig. 4. Predicted values of personality traits and ground truth.

is more predictable in estimating personality other than the metrics we have used: that is, standard deviation,
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circadian rhythm, and two regularity indexes. As sensing devices become more powerful and additional sensors
become available, the research on passive personality assessment may identify other variability features that are
powerful predictors of behavior and personality.
Third, it is unclear how sensing restrictions on the iOS platform influenced our sample. The original sample

consisted of 646 students, out of which 117 (18%) were Android users and 529 (82%) reported being iOS users.
However, only about a quarter – 159 participants – could be included in the analyses presented in this paper –
that is participants that had more than 7 days of over 19 hours of sensing data. This is a conservative inclusion
criteria we used in prior studies. Of those, 70 (44%) were Android users and 89 (56%) were iOS users. It is unclear
to what extent the comparatively small subset of iOS users with sufficient amounts of sensor data compare to
their excluded peers. Typically, Android is more open to continuous passive sensing even though new versions of
the Android OS are placing more restrictions. Apple’s iOS has been more closed to continuous passive sensing
by imposing restrictions on sampling rates and access to sensing data. As a result the more restrictive iOS
environment limits data gathering. In our study, some iOS users reported the app was inadvertently terminated
requiring us to troubleshoot the issues throughout the data collection process. Despite these challenges, we
are confident that the actions we took to mitigate problems (e.g., conservative inclusion criteria, matching data
quality collected across platforms, balance of iOS and Android users) has lead to a good quality dataset.
Fourth, further work is required to balance the accuracy and resources usage. We collected an extensive

amount of data via passive sensing for capturing as various and accurate behaviors as possible. According to our
survey [29] after this study, participants were satisfied with the self-tracking assignment using mobile phones.
The average levels of satisfaction were 3.70 (Android) and 3.92 (iOS), respectively (from 1 Very unsatisfied to 5
Excellent). Besides, 61% participants reported they did not feel uncomfortable using the app at all. However, 53%
Android and 28% iOS users noticed the draining phone batteries, which indicated the biggest obstacle of allowing
the adoption in real life scenarios. As a follow-up, we tested the power consumption by turning on and off each
sensing component (i.e, activity detection, accelerometer, in-situ voice classifier, GPS location and scheduled data
uploading) on factory-reset Android and iOS phones. Our tests show that the voice classifier and collecting raw
accelerometer data are the major causes of energy cost. We decide to decrease the resource usage by stopping
collecting the accelerometer data and lowering the duty cycle of voice classifier. The accelerometer data is less
useful provided that we have already obtained the activity inferences (i.e., stationary, walking, running, cycling,
in vehicle). The new microphone duty cycle is 1 minute (if no conversation detected) up to 3 (if conversations
detected) minutes on and 9 minutes off. Based on these adjustments, we have significantly improved the energy
efficiency of the sensing system to support long-term studies. The new system is now being used in on-going
4-year study. In the new study, the participant are satisfied with the battery consumption. We believe we can
better understand the trade-off between the accuracy and resources usage as the new project progresses.
While our results are statistically significant and encouraging they are limited to students at UT Austin.

The length of the study is only 14 days. We acknowledge this is the first step in this area of research and that
more is needed to push forward our understanding of the importance of within-person variability. We welcome
researchers to use our within-person features in their studies, and encourage others to conduct similar studies at
different sites with different populations to examine whether the findings replicate and are generalizable.

7 CONCLUSION AND FUTURE WORK
Personality traits describe people’s characteristic patterns of thinking, feeling, and behaving. As such, personality
traits describe patterns of variability ‘between-persons’ - that is, patterns of behavior that distinguish people from
one another. Personality states, on the other hand, refer to patterns of variability ‘within-persons’. Within-person
variability describes fluctuations in how a person’s thinking, feeling, and behaving changes over time. This
research reports a mobile sensing approach to assess within-person behavior variability, and thus explores
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how within-person variability patterns can be used to predict personality traits using features derived from
mobile sensing. Past research has shown within-person behavior variability to be linked to various psychological
characteristics. However, much of the past research relies on a person’s capacity to accurately recall their
daily experiences retrospectively. Although some researchers have utilized information from smartphones in
personality prediction, most work focuses on between-person variability and usually only includes Android
participants. Other approaches that use texts on social networks for personality prediction require access to
extensive information about people’s online social networks. We designed and implemented a cross-platform
mobile sensing study to capture the within-person variability among college students in their social interactions,
mobility and movement, daily activities and situational/environmental information. We demonstrate how within-
person variability patterns measured by smartphone sensing are related to and thus can be used to predict
self-reported personality traits. Our results show that our proposed personality prediction model based on
within-person variability features provides good estimation of personality traits, particularly for extraversion
and agreeableness. This is, to the best of our knowledge, the first scaled study investigating how within-person
variability is predictive of personality traits. It complements and extends existing methods, providing researchers
with an additional measure that assesses large groups of participants with minimal burden.

This work represents an important first step toward passive personality assessment. There is a need for the
community interested in personality prediction to take the next step and conduct a large scale, longitudinal study
with a diverse cohort (e.g., including students, working adults, the elderly). As a contribution, our system can be
easily deployed to collect the necessary mobile sensing data for behavioral tracking in new personality-related
projects. It has some potential applications. First, a hybrid approach that combines mobile sensing data with the
content available on social networking such as Facebook and Twitter would likely improve predictive performance.
Second, the sensing system offers a practical alternative for passive personality assessment, allowing assessment
of psychological characteristics in large-scale applications when questionnaires are impractical. The goal of
such an approach is to achieve personality assessment without any human intervention. Such an assessment
technique could be widely used in recommendation systems, recruiting procedure, for target filtering and for
many human-centered applications. Finally, using mobile sensing for measuring within-person variability in
behavioral patterns is not limited to personality. This method can be adapted for use in other research areas,
such as those focused on prediction of psychological well-being, mental health, or even workplace performance.
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